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Abstract

Inferences about counterfactuals are essential for prediction, answering “what if” ques-

tions, and estimating causal effects. However, when the counterfactuals posed are too far

from the data at hand, conclusions drawn from well-specified statistical analyses become

based on speculation and convenient but indefensible model assumptions rather than em-

pirical evidence. Unfortunately, standard statistical approaches assume the veracity of the

model rather than revealing the degree of model-dependence, and so this problem can be

hard to detect. We develop easy-to-apply methods to evaluate counterfactuals that do not

require sensitivity testing over specified classes of models. If an analysis fails the tests we

offer, then we know that substantive results are sensitive to at least some modeling choices

that are not based on empirical evidence. We use these methods to evaluate the extensive

scholarly literatures on the effects of changes in the degree of democracy in a country (on

any dependent variable) and separate analyses of the effects of UN peacebuilding efforts.

We find evidence that many scholars are inadvertently drawing conclusions based more on

modeling hypotheses than on evidence in the data. For some research questions, history

contains insufficient information to be our guide. Free software that accompanies this

paper implements all our suggestions.



1 Introduction

Social science is about making inferences — using facts we know to learn about facts

we do not know. Some inferential targets (the facts we do not know) are factual, which

means that they exist even if we do not know them. In early 2003, Saddam Hussein was

obviously either alive or dead, but the world did not know which it was until he was found.

In contrast, other inferential targets are counterfactual, and thus do not exist, at least not

yet. Counterfactual inference is crucial for studying “what if” questions, such as whether

the Americans and British would have invaded Iraq if the 9/11/2001 attack on the World

Trade Center had not occurred. Counterfactuals are also crucial for making forecasts, such

as whether there will be peace in the Mideast in the next two years, since the quantity

of interest is not knowable at the time of the forecast, although it will eventually become

known. Counterfactuals are essential as well in making causal inferences, since causal

effects are differences between factual and counterfactual inferences: for example, how

much more international trade would Syria have engaged in during 2003 if the Iraqi war

had been averted.

Counterfactual inference has been a central topic of methodological discussion in po-

litical science (Fearon, 1991, Thorson and Sylvan, 1982; Tetlock and Belkin, 1996; Tetlock

and Lebow, 2001), psychology (Tetlock, 1999; Tetlock et al., 2000), history (Murphy,

1969, Gould, 1969; Dozois and Schmidt, 1998; Tally, 2000), philosophy (Lewis, 1973;

Kvart, 1986), computer science (Pearl, 2000), statistics (Rubin, 1974; Holland, 1986), and

other disciplines. “Counterfactuals are an essential ingredient of scholarship. They help

determine the research questions we deem important and the answers we find to them”

(Lebow, 2000: 558). As scholars have long recognized, however, some counterfactuals are

more amenable to empirical analysis than others. In particular, some counterfactuals are
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more strained, farther from the data, or otherwise unrealistic.

The problem is easy to see in the simple example in Figure 1. Here, we fit linear and

quadratic models to a simple set of simulated data (with the one explanatory variable on

the horizontal axis and the dependent variable and its expected value on the vertical axis).

The fit of the two models to the observed data is almost indistinguishable and we have little

statistical reason to choose one over the other. This is not a problem if we are interested in

a prediction of Y for any X between 1 and 2 where the data can be found; in this region,

the choice of model is unimportant since either model (or most any other model with a

reasonably smooth functional form) would yield similar predictions. However, predictions

of Y for values of X outside the range of the data would be exquisitely sensitive to the

choice of the model. In other words, inferences in the range of the data are far less model-

dependent than inferences outside the data. The risk with model-dependent inferences is

that substantive conclusions are based more on apparently minor modeling choices than

on the empirical evidence.

[Figure 1 about here.]

But how can we tell how model-dependent inferences are when the counterfactual

inference is not so obviously extreme, or when it involves more than one explanatory

variable? The answer to this question cannot come from any of the model-based quantities

we normally compute and our statistics programs typically report, such as standard errors,

confidence intervals, coefficients, likelihood ratios, predicted values, test statistics, first

differences, p-values, etc. (For example, although not shown in the figure, the confidence

intervals for the extrapolations in Figure 1 do not contain the predictions from the other

model for much of the range of the extrapolation.) To understand how far from the

facts are our counterfactual inferences, and thus how model-dependent are our inferences,
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we need to look elsewhere. At present, scholars study model-dependence primarily via

sensitivity analyses: changing the model and assessing how much conclusions change. If

the changes are substantively large for models in a particular class, then inferences are

deemed model-dependent. If the class of models examined are all a priori reasonable,

and conclusions change a lot as the models within the class change, then the analyst may

conclude that the data contain little or no information about the counterfactual question

at hand. This is a fine approach, but it is insufficient in circumstances where the class of

possible models cannot be easily formalized and identified, or where the models within a

particular class cannot feasibly be enumerated and run, i.e., most of the time. In practice,

the class of models chosen are those that are convenient — such as those with different

control variables under the same functional form. The identified class of models normally

excludes at least some that have a reasonable probability of returning different substantive

conclusions. Most often, this approach is skipped entirely.

What the approach offered here provides is several easy-to-apply methods that reveal

the degree of model dependency, without having to run all the models. As a consequence, it

applies for the class of nearly all models, whether or not they are formalized, enumerated,

and run, and for the class of all possible dependent variables, conditional only on the

choice of a set of explanatory variables. If an analysis fails our tests then we know it will

fail a sensitivity test too, but without being in the impossible position of having to run all

possible models to find out.

Our field includes many discussions of the problem of strained counterfactuals in qual-

itative research. For example, Lebow (2000) and Fearon (1991) distinguish between “mir-

acle” and “plausible” counterfactuals and offer qualitative ways of judging the difference.

Tetlock and Belkin (1996: ch. 1) also discuss criteria for judging counterfactuals (of which

“historical consistency” may be of most relevance to our analysis). Qualitative analysts
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seem to understand this issue well. Scholars frequently ask questions like whether the

conflict in Iraq is sufficiently like Vietnam so that we can infer the outcome from this prior

historical experience. Unfortunately, although extreme counterfactuals is one of the most

serious problems confronting comparative politics and international relations, quantitative

empirical scholarship rarely addresses the issue. Yet, it is hard to think of many quanti-

tative analysts in comparative politics and international relations in recent years who do

not stop to interpret their results by asking what happens, for example, to the probability

of conflict if all control variables are set to their means and the key causal variable is

changed from its 25th to its 75th percentile value (King, Tomz, and Wittenberg, 2000).

Every one of these analyses is making a counterfactual prediction, and every one needs

to be evaluated by the same ideas well known in qualitative research. In this paper, we

provide quantitative measures of these and related criteria that are meant to complement

the ideas for qualitative research discussed by many authors.

We offer two empirical examples. The first evaluates inferences in the scholarly litera-

tures on the effects of democracy. These effects (on any of the dependent variables used in

the literature) have long been among the most studied questions in comparative politics

and international relations. Our results show that many analyses about democracy in-

clude at least some counterfactuals with little empirical support, so that scholars in these

literatures are asking some counterfactual questions that are far from their data, and are

therefore inadvertently drawing conclusions about the effects of democracy in some cases

based on indefensible model assumptions rather than empirical evidence.

Whereas our example about democracy applies approximately to a large array of prior

work, we also introduce an example that applies exactly to one groundbreaking study on

designing appropriate peacebuilding strategies (Doyle and Sambanis, 2000). We replicate

this work, apply our methods to these data, and find that the central causal inference in the
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study involves counterfactuals that are too far from the data to draw reliable inferences,

regardless of the methods employed. We illustrate by showing how inferences about the

effect of UN intervention drawn from these data are highly sensitive to model specification.

Section 2 shows more specifically how to identify questions about the future and “what

if” scenarios that cannot be answered well in given data sets. This section introduces sev-

eral new approaches for assessing how based in factual evidence is a given counterfactual.

Section 3 provides a new decomposition of the bias in estimating causal effects using ob-

servational data that is more suited to the problems most prevalent in political science.

This decomposition enables us to identify causal questions without good causal answers

in given data sets and shows how to narrow these questions in some cases to those that

can be answered more decisively. We use each of our methods to evaluate counterfactuals

regarding the effects of democracy and UN peacekeeping. Section 4 concludes.

2 Forecasts and “What If” Questions

Although statistical technology sometimes differs for making forecasts and estimating the

answers to “what if” questions (e.g., Gelman and King, 1994), the logic is sufficiently

similar that we consider them together. Although our suggestions are general, we use

aspects of the international conflict literature as a running example to fix ideas. Thus,

let Y , our outcome variable, denote the degree of conflict initiated by a country, and X

denote a vector of explanatory variables, including measures such as GDP and democracy.

In regression-type models, including least squares, logit, probit, event counts, duration

models, and most others used in the social sciences, we usually compute forecasts and

answers to “what if” questions using the model-based conditional expected value of Y

given a chosen vector of values x of the explanatory variables, X.

The model typically includes a specification for (i.e., assumption about) the conditional
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expectation function (CEF), which is merely a general expression for the linear or nonlinear

regression line, i.e., how the expected value (or mean) of Y depends on X. In linear

regression, the CEF is E(Y |X) = Xβ = β0 + β1X1 + · · · + βkXk, whereas in logistic

regression the CEF is E(Y |X) = 1/(1 + e−Xβ). These CEFs and others are illustrated in

Figure 2 with one statistical model in each of four graphs, and with three CEFs displayed

in each based on different choices of parameter values from the chosen functional form. For

example the top right graph displays only the linear functional form, with three lines that

differ based on their parameter values (the intercept and slope). The task of the analyst

is to chose the statistical model (the graph), whereas the task of the parametric statistical

analysis optimization routine is to find the parameter values that select one member of

the assumed family of curves that best fits the data. The optimization routines usually

work exceptionally well, but they can only choose within the given family. If the data are

generated by one family of CEFs (one graph) but another is assumed by the investigator,

we’ll still get an approximation (such as the best linear approximation to the logit curve),

but the estimated predictions can then be far off the mark, as Figure 1 illustrates.

[Figure 2 about here.]

Interestingly, no matter how good the fit to the data, each of these CEFs can be

computed for any (real) values of the counterfactual point x. The model never complains,

and exactly the same calculation can be applied for any x. However, even if the model

fits the data we have in our sample well, a vector x far from any rows in the matrix X

is not likely to produce accurate forecasts. If a linear model indicates that one more year

of education will earn you an extra $1,000 in annual income, the model also implies that

10 more years of education will get you $10,000 in extra annual income. In fact, it also

says — with as straight a face as a statistical model ever offers — that 50 years more of
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education will raise your salary by $50,000. Even though no statistical assumption may be

violated as a result of your choice of any set of real numbers for x, the model is obviously

capable of producing better forecasts (and “what if” evaluations) for some values of x than

others. Predictive confidence intervals for forecasts farther from the data are larger, but

confidence intervals computed in the usual way still assume the veracity of the model, and

thus the uncertainty it represents does not include model dependence, no matter how far

the counterfactual is from the data.

Worrying about model choice may be good in general, but it will not help here. Other

models will not do verifiably better with the same data; one cannot determine from the

evidence which model is more appropriate. So searching for a better model, without better

data, better theory, or a different counterfactual question, in this case is simply futile. We

merely need to recognize that some questions cannot be answered reliably from some data

sets. Our linearity (or other functional form assumptions) are written globally — for any

value of x — but in fact are relevant only locally — in or near our observed data. In this

paper, we are effectively seeking to understand where “local” ends and “global” begins.

For forecasting and analyzing what if questions, our task comes down to seeing how “far”

x is from the observed X.

Indeed, this point is crucial since the greater the distance from the counterfactual to

the closest reasonably sized portion of available data, the more model dependent inferences

can be about the counterfactual. In our technical companion paper, we define this claim

more precisely and, apparently for the first time, prove it mathematically. That is, no

matter what the counterfactual, no matter what class of models one identifies as plausible,

no matter how well the models tested fit the observed data, the farther the counterfactual

from the data the higher the degree of model dependence becomes possible. Counterfac-

tual questions sufficiently far from the data produce inferences with little or no empirical
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content. Moreover, our proof is highly general. It does not assume knowledge of the

model, its functional form, the estimator, or the dependent variable, and only assumes

that the CEF (conditional on X) satisfies a general continuity condition, which fits almost

all statistical models used and theoretical processes hypothesized in the discipline.

We now offer two procedures for measuring the distance from a counterfactual to the

data that can be used to assess whether a question posed can be reliably answered from

any statistical model. Neither requires any information about the model, estimator, or

even the dependent variable.

2.1 Interpolation vs. Extrapolation

A simple but powerful distinction in measuring the distance of a counterfactual from

the data, and thus assessing the counterfactual question x, is whether answering it by

computing the CEF E(Y |x) would involve interpolation or extrapolation (e.g., Kuo, 2001;

Hastie et al., 2001). Except for some unusual situations we offer diagnostics for below,

datasets contain more information about counterfactuals that require interpolation than

those that require extrapolation. Hence answering a question involving extrapolation

normally requires far more model-dependent inferences than one involving interpolation.

For intuition, imagine we have data on foreign aid received by countries with two

natural disasters in a year and and we wished to estimate how much foreign aid countries

receive when they have two natural disasters in a year. (Suppose for simplicity that each of

the natural disasters is approximately the same size and of roughly the same consequence.)

If we have enough such data, no modeling assumptions are necessary. That is, we can make

a model-free inference by merely averaging the amount of money spent on foreign aid in

these countries.

However, suppose we were still interested in foreign aid received by countries with two
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natural disasters, but we only observed countries with one or three disasters in a year. This

is a simple (counterfactual) “what if” question because we have no data on countries with

two natural disasters. The interpolation task, then, is to draw some curve from expected

foreign aid received in countries with a single natural disaster to the expected aid received

in countries with three natural disasters; where it crosses the two-natural-disaster point is

our inference. Without any assumptions, this curve could go anywhere, and the inferred

amount of foreign aid received for countries with two disasters would not be constrained

at all. Imposing the assumption that the CEF is “smooth” (i.e., that it contains no sharp

changes of direction and that it not bend too fast or too many times between the two end

points) is quite reasonable for this example, as it is for most political science problems;

it is also intuitive, but it is stronger than necessary to prove our point. The consequence

of this smoothness assumption is to narrow greatly the range of foreign aid into which

the interpolated value can fall, especially compared to an extrapolation. Even if the aid

received by countries with two disasters is higher than the aid received for countries with

three disasters or lower than nations with only one, it probably won’t be too much outside

this range.

However, now suppose we observe the same data but need to extrapolate to foreign aid

received for countries with four natural disasters. We could impose some smoothness again,

but even allowing one bend in the curve could make the extrapolation change a lot more

than the interpolation. One way to look at this is that the same level of smoothness (say

the number of changes of direction allowed) constrains the interpolated value more than the

extrapolated value, since for interpolation any change in direction must be accompanied

by a change back to intersect the other observed point. With extrapolation, one change

need not be matched with a change in the opposite direction, since there exists no observed

point on the other side of the counterfactual being estimated. This is also an example of
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our general proof since the counterfactual requiring interpolation in this example is closer

to more data than the counterfactual requiring extrapolation, and so the interpolation is

less model dependent.

If we learn that a counterfactual question involves extrapolation, we still might wish

to proceed if the question is sufficiently important, but we would be aware of how much

more model dependent our answers will be. How to determine whether a question involves

extrapolation with one variable should now be obvious. Ascertaining whether a coun-

terfactual requires extrapolation with more than one explanatory variable requires only

one additional generalizing concept: Questions that involve interpolation are values of the

vector x which fall in the convex hull of X.

Formally, the convex hull of a set of points is the smallest convex set that contains

them. This is easiest to understand graphically, such as via the example in Figure 3 for

one explanatory variable (on the left) and for two (on the right), given simulated data.

The small vertical lines in the left graph denote data points on the one explanatory vari-

able in that example. The convex hull for one variable is marked by the maximum and

minimum data points: any counterfactual question between those points requires interpo-

lation; points outside involve extrapolation. (The left graph also includes a nonparametric

density estimate, a smooth version of a histogram, that gives another view of the same

data.) For two explanatory variables, the convex hull is given by a polygon with extreme

data points as vertices such that for any two points in the polygon, all points that are on

the line connecting them are also in the polygon (i.e., the polygon is a convex set). In

other words, if the right graph in Figure 3 were a cork board, and the dots were nails, the

convex hull would be a rubber band stretched around all the points. With this definition

of a convex hull, a counterfactual question x that appears outside the polygon requires

extrapolation. Anything inside involves interpolation.
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[Figure 3 about here.]

Although Figure 3 only portrays convex hulls for one and two explanatory variables,

the concept is well defined for any number of dimensions. For three explanatory variables,

and thus three dimensions, the convex hull could be found by “shrink wrapping” the fixed

points in three dimensional space. The shrink wrapped surface encloses counterfactual

questions requiring interpolation. For four or more explanatory variables, the convex hull

is more difficult to visualize, but from a mathematical perspective, the task of deciding

whether a point lies within the hull generalizes directly.

The concept of a convex hull is well known in statistics and has been used regularly

to convey the idea of extrapolation and interpolation. However, it has almost never been

used in practice for problems with more than a couple of explanatory variables. The

problem is not conceptual, but rather computational. Identifying the hull with even a few

explanatory variables can take an extraordinary amount of computational power. Doing

it with more than about ten variables appears nearly impossible. Moreover, the problem

of locating whether a counterfactual point lies within or outside the hull is itself a difficult

computational problem that also has no solution known in the statistical literature.

In our technical companion paper, we solve this problem with a new algorithm capable

of ascertaining whether a point lies within a convex hull quickly even for large numbers of

variables and data points. We have also developed easy-to-use software, “WhatIf: Software

for Evaluating Counterfactuals,” that automates this convex hull memberhship check as

well as implementing the other methods discussed in this paper (see Stoll, King and Zeng,

2005). The result is that the convex hull can now easily be used in any applied statistical

analysis to sort counterfactual questions that may be close enough to the data to be

answered by the empirical evidence from those that are farther away and may require

more highly model dependent inferences.
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2.2 How Far Is The Counterfactual from the Data?

The interpolation vs. extrapolation distinction introduced in Section 2.1 is a simple di-

chotomous assessment of the distance from a counterfactual to the data. In our experience,

this distinction is sufficient in most instances to ascertain whether the data can support

a counterfactual inference without excessive model dependence. In some instances, how-

ever, a finer distinction is warranted. For example, points just outside the convex hull are

arguably less of a problem than those farther outside, and they are clearly closer to the

data and, by our proof, less model dependent. Another related issue is that it is theo-

retically possible (although probably empirically infrequent) for a point just outside the

interpolation region defined by the convex hull of X to be closer to a large amount of data

than one inside the hull that occupies a large empty region away from most of the data.

Thus, in addition to assessing whether a counterfactual question requires interpolation or

extrapolation, we also more explicitly measure the distance from the counterfactual to the

data.

Our goal here is some measure of the number or proportion of observations “nearby”

the counterfactual. To construct this quantity, we begin with a measure of the distance

between two points (or rows) xi and xj based on Gower’s (1971) metric (which we call

G2). It is defined simply as the average absolute distance between the elements of the two

points, divided by the range of the data:

G2
ij =

1
K

K∑
k=1

|xik − xjk|
rk

. (1)

where the range is rk = max(X.k) − min(X.k) and the min and max functions return

the smallest and largest elements respectively in the set including the values of the kth

explanatory variable. Thus, the elements of the measure are normalized for each variable

to range between zero and one, and then averaged. The measure is designed to apply to all
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types of variables, including both continuous and discrete data.1 Since the counterfactual

x may be outside the convex hull of X, our version of G2 may range anywhere from zero

on up. Thus, G2 = 0 indicates that x and the row in question of X are identical, and the

larger G2
ij , the more different the two rows are. (If G2 is greater than 1 for any row of

X, then the counterfactual x lies outside the convex hull of X, but the reverse does not

necessarily hold.) We interpret G2 as the distance between the two points as a proportion

of the distance across the data, X. So a distance between two points of G2 = 0.3 means

that to get from one point to the other, we need to go the equivalent of 30% of the way

across the range of the data set.

With G2 applied to our problem, we need to summarize n numbers, the distances

between the counterfactual and each row in the data X. If space permits, we suggest

presenting a cumulative frequency plot portraying vertically the fraction of rows in X

with G2 values less than the given value on the horizontal axis. If space is short, such as

would typically happen if many counterfactuals need to be evaluated, any fixed point on

this graph could be used as a one-number summary. Our recommendation for a rule of

thumb in defining observations that are sufficiently close to the counterfactual to make for

relatively reliable inferences is to use the fraction (or number) of observations in the data

with distances (values of G2) less than the “geometric variability” (GV) of X — which is

roughly the average distance among all pairs of observations in the data. Then we could

report the fraction of rows in the data with G2 values less than one GV. We interpret the

resulting measure as the fraction of the observed data nearby the counterfactual. We have

found this rule of thumb to be useful in practice for determining the effective number of

observations available to make inferences without high levels of model dependence

Observations farther than one GV away from the counterfactual normally have little

empirical content for inference about the counterfactual, and can produce considerable

13



model dependence. Researchers should consider downweighting or even discarding these

observations from the data, unless they are in the unusual situation of being certain that

their model specification is correct. Of course, this is only a rule of thumb and so more

data conserving rules could be applied (such as discarding data only 1.5 or 2 GVs away

from the counterfactual) or even rules that result in less model dependence, depending on

how much confidence one puts in the chosen model.

2.3 Counterfactuals About Democracy

We now apply these methods of evaluating counterfactuals to address one of the most

asked questions in political science: what is the effect of a democratic form of government

(as compared to less democratic forms). We study counterfactuals relating to the degree

of democracy using data collected by the State Failure Task Force (Esty et al., 1998). See

King and Zeng (2002) for an independent evaluation.

These data are among the most extensively used in this area, in part because the au-

thors had considerable resources from the federal government to marshal for their data

collection efforts, and so the usual scarcity of time, resources, expertise, etc., that affect

most data collection efforts are not constraints here. The main limitation on types and es-

pecially combinations of data the task force could collect was the world: that is, countries

can be found with only a finite number of bundles of characteristics, and this constraint

affects everyone studying counterfactuals about democracy, no matter what the depen-

dent variable. Thus, to the extent that we find that certain counterfactual questions of

interest are unanswerable, our point regarding problems in the literatures on the effects of

democracy are all that much firmer.

After elaborate searches Esty et al. (1998) used as explanatory variables trade openness

(as a proxy for economic conditions and government effectiveness), the infant mortality
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rate, and democracy. Democracy is coded as two dummy variables representing autocracy,

partial democracy, and full democracy. King and Zeng (2002) improved their forecasts

by, among other things, adding to these the fraction of the population in the military,

population density, and legislative effectiveness.

The task force’s dependent variable is the onset of state failure, but since we do not

require specifying the dependent variable, our analyses apply to all dependent variables

one might ever want to use. “What would happen if more of the world were democratic”

is a question that underlies much other work in comparative politics and international

relations over the last half century as well as a good deal of American foreign policy.

Of course, just because our analysis applies to all possible dependent variables, the

subject of any one article will normally be one or a small number of these. To see how

widely our analyses apply, we began collecting other articles in the field that use a set of

explanatory variables with a fair degree of overlap with the set used here, and stopped at

twenty after searching only the last few years. The methods presented in this section would

need to be repeated to draw more precise conclusions from each of these other articles, but

the overlap in the explanatory variables was sufficient to infer that the results presented

here will likely apply at least roughly to a large number of articles in the field.

We begin a description of our empirical analyses with four clear examples, the first

two obviously extrapolations and the second two obviously interpolations, and then move

to averages of many other cases of more substantive interest. Before turning to empir-

ically reasonable counterfactuals, we begin with examples that are deliberately extreme.

Extreme examples are of course useful for ensuring expository clarity, but they are also

useful here since, although almost no serious researcher would expect the data to provide

information about such counterfactuals if intentionally asked, almost all empirical ana-

lysts estimating the effects of democracy have implicitly asked precisely these questions.
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This is always the case when all observations are used in the estimation and causal effect

evaluation, as is typical in the literature. So although the two examples we now introduce

are obviously extreme, we show that many actually asked in the literature are in fact also

quite extreme.

Our first extreme counterfactual is to suppose that Canada in 1996 had become an

autocracy, but its values on other variables remained at their actual values? We find, as

we would expect, that this extreme counterfactual is outside the convex hull of the observed

data and therefore requires extrapolation. In other words, we can ask what would have

happened if Canada had become autocratic in 1996, but we cannot use history as our

guide, since the world (and therefore our data) includes no examples of autocracies that

are similar enough to Canada on other measured characteristics. Similarly, if we ask what

would have happened if Saudi Arabia in 1996 had become a full democracy, we would also

be required to make an extrapolation, since it too falls outside the convex hull.

We now ask two counterfactual questions that are as obviously reasonable as the last

two were unreasonable. Thus, we ask what would have happened if Poland had become an

autocracy in 1990 (i.e., just after it became a democracy)? From qualitative information

available about Poland, this counterfactual is quite plausible, and many even thought (and

worried) about it actually occurring at the time. Our analysis confirms the plausibility of

this suspicion since this question falls within the convex hull; analyzing it would require

interpolation and probably not much model dependence. In other words, the world has

examples of autocracies that are like Poland in all other measured respects, and so history

can be our guide. Another reasonable counterfactual is to ask what would have happened

had Hungary become a full democracy in 1989 (i.e., just before it actually did become a

democracy). This question is also in the convex hull and would therefore also require only

interpolation and little model dependence to draw inferences.
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We now further analyze these four counterfactuals questions using our modified Gower

distance measure. The question is how far the counterfactual x is from each row in the

observed data set X, and so the distance measure applied to the entire data set gives n

numbers. We summarize these numbers with our rule of thumb by asking what fraction

of observations in our data are within one GV of G2, which is approximately 0.1 (i.e.,

an average distance that is equivalent to 10% of the distance from the minimum to the

maximum values on each variable in X). Essentially no real country-years are within 0.1

or less of this counterfactual for changing Saudi Arabia to a democracy, but about 25%

of the data are within this distance for Hungary. Similarly, just a few observations in the

data are within even 0.15 of Canada changing to an autocracy, although about a quarter

of the country-years are within this distance for Poland. Recall that we do not need all

the data in our collection to be near a counterfactual, only as much as needed to base our

inferences on.

We now examine a larger sets of counterfactuals all at once. We start with all variables

set at their actual values and then ask what would happen to all autocracies if they became

full democracies, and to all full democracies if they became autocracies. This analysis in-

cludes 5,814 country-years, including 1,775 full democracies and 4,039 autocracies. What

we found was that only 28.4% of the country-years in this widely examined counterfactual

fell within the convex hull of the observed data. This means that to analyze this coun-

terfactual in practice, 71.6% of the country-years would require extrapolation and would

thus be highly model-dependent regardless of the model applied or dependent variable

analyzed. This is quite important, since the usual practice of stacking up all the data,

running an analysis, and interpreting the coefficients in standard ways is equivalent to

directly evaluating these counterfactuals.

[Table 1 about here.]
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As Table 1 summarizes, the result is not symmetric: Among the full democracies

switched to autocracies, 53% require interpolation, whereas among the autocracies switched

to full democracies, only 17% are interpolation problems. Unfortunately, little discussion

in the literature reflects these facts, but they are crucial for drawing valid inferences with-

out high degrees of model dependence.

The first few columns of Table 1 break down these average results for counterfactuals

from three different regions. The rest of the table provides the fraction of countries within

a modified Gower metric of about one GV, or 0.1, of a counterfactual, averaged over

all counterfactuals within a given region and type of change in democracy. For example,

across the 4,039 country-years where we could hypothetically change autocracies to partial

democracies, an average of only 4.2% of the data points are this close to the counterfactual.

The rest of the data do not add much empirical content and generate considerable model

dependence.

The overall picture in this table is striking. Studying the effects of changes in democ-

racy have been a major project within comparative politics and international relations for

at least half a century. This table applies approximately to almost every such analysis

with democracy as an explanatory variable in evert field with the same or similar con-

trol variables, regardless of the choice of dependent variable. The results here appear to

suggest that many inferences in these fields (or most countries within each analysis) have

little information content for the questions being posed and are highly model-dependent.

Consequently, many conclusions are based more on unverifiable assumptions about the

model than on empirical data. The result varies by region and by counterfactuals, and it

would of course vary more if we changed the set of explanatory variables. We can only

really know for sure by applying the methods introduced here to these other data sets, but

no matter how you look at it, the problem of reaching beyond one’s necessarily limited
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data comes through in Table 1 with clarity.

Numerous interesting case studies could emerge from analyses like these. For example,

public policy makers and the media spent considerable time debating what would happen

if Haiti became more of a democracy. In the early to mid-1990s, we find that the coun-

terfactual of moving Haiti from a partial to a full democracy was in the convex hull, and

hence a question that had a chance of being accurately answered with the available data.

By 1996, conditions had worsened in the country, and this counterfactual became more

counter to the facts, moving well out of the hull and thus required extrapolation.

2.4 Counterfactuals About UN Peacekeeping

In “the first quantitative analysis of the correlates of successful peacebuilding and of the

contribution of UN operations to peacebuilding outcomes,” Doyle and Sambanis (2000,

p.782) build and analyze a data set of 124 post-World War II civil wars. They char-

acterize their results as firm enough to go beyond merely academic conclusions and to

provide “broad guidelines for designing the appropriate peacebuilding strategy” (p.779)

in practice. This work opens up a new area of quantitative analysis about an important

public policy question for our field. We follow their lead and study the authors’ “main

concern” — “how international capacities, UN peace operations in particular, influence

the probability of peacebuilding success” (p.783). Applying our methods, we found that

the empirical conclusions offered in the article on this issue depend mostly on statistical

modeling assumptions rather than empirical evidence. We do not address the veracity of

the article’s conclusions, only the weight of the data used to support them, and of course

the authors should not be faulted for being unaware of methods we introduce here, years

after their article was published. We also do not address the nine other hypotheses they

test or other methodological issues raised by their analysis.
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Doyle and Sambanis were helpful in providing us their data. We begin our analysis

by replicating their key logistic regression model, numbered A8 in their article (Doyle

and Sambanis, 2000: Table 3, p.790). Other models (each with different measures of UN

intervention or other variables) in the article showed no effect of any specific type of UN

intervention considered. It was therefore only the final specification in their Model A8

that the authors offered to support the article’s key conclusion that “multilateral United

Nations peace operations make a positive difference . . . and are usually successful in ending

the violence” (abstract, p.779).

Our replication appears in Table 2, marked “original model”. Doyle and Sambanis

report results in odds ratios, whereas we report the more traditional logit coefficients, but

the replication is otherwise exact.

[Table 2 about here.]

The theoretical justification for Doyle and Sambanis’ logit specification comes from

what they call their “interactive model,” which posits peacebuilding success as the result

of interactions among the level of hostility, local capacities, and international capacities

such as the UN involvement. Their main concern is the effect of multidimensional UN

peacekeeping operations, which include “missions with extensive civilian functions, in-

cluding economic reconstruction, institutional reform, and election oversight,” and which

they find “are extremely significant and positively associated with peacebuilding” (p.791).

In their original model replicated in Table 2, this is their UNOP4 variable, which is di-

chotomous: coded 1 for the seven multidimensional UN peacekeeping operations in their

data and 0 for all other observations. Clearly the result is considerably larger than its

standard error, even given the small number of observations available. When translated

into an odds ratio, which is Doyle and Sambanis’ preferred form, the odds of peacebuilding
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success with a multidimensional UN peacekeeping operation is 23 times larger than with

no such operation, holding constant a list of potential confounding control variables. We

return to this remarkable result in Section 3.7 when we discuss causal inferences.

In this section, we examine the counterfactuals of interest. Assessing the causal effects

of multidimensional UN peacekeeping operations implicitly involves asking the question:

In civil wars with multilateral UN involvement, how much peacebuilding success would we

have witnessed if the UN had not gotten involved? Similarly, in civil wars without UN

involvement, how much success would there have been if the UN had gotten involved? In

other words, the goal is counterfactual predictions with the dichotomous UNOP4 variable

set to 1−UNOP4, which is one counterfactual for each observation. To begin with, we check

how many counterfactuals are in the convex hull of the observed data. We found none.

That is, every single counterfactual in the data set is a risky extrapolation rather than

what would have been a comparatively safer interpolation. We also computed the Gower

distance of each counterfactual from the data and found that few of the counterfactuals

were near much of the data. For example, for all counterfactuals, an average of only 1.3%

of the observations were within one GV (which is 0.11 in these data). Thus, not only

are the counterfactuals all extrapolations, but they do not lie just outside the convex hull

and are instead mostly fairly extreme extrapolations well beyond the data. These results

strongly indicate that the data used in the study contain little information to answer the

key causal question asked, and hence the conclusions reached there are based more on

theory and model specifications than empirical evidence.

We now proceed to give relatively simple examples of the consequences of this result in

terms of model dependence. We begin by making only one change in the logit specification

by including a simple interaction between UNOP4 and the duration of the civil war, leaving

the rest of the specification as is. (This is of course only one illustrative example, and not
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the only aspect of the specification sensitive to assumptions.) Including this interaction

would seem highly consistent with the “interactive” theory put forward in the article,

and so would not seem possible to exclude on theoretical grounds alone. Excluding this

interaction, which the original specification does, is equivalent to assuming that the effect

of UN peacekeeping operations is identical for wars of all durations (except for the trivial

assumed nonlinearities due to the logit model). Unfortunately, nothing in the theory

expounded in the article, or in other literature in the field, justifies the use of such an

assumption without empirical testing.

The result of this new specification is given in the second set of columns in Table 2.

The coefficient on the interaction is positive and clearly distinguishable from zero (the

p-value is 0.001), with a slightly higher likelihood and pseudo R2 values, and so represents

clear evidence by the usual rules of thumb to indicate that this model might even be

preferred to the original one. To be clear, however, we do not necessarily favor this model

or the original; we present both as two of many plausible alternatives not ruled out on the

grounds of theory or data fitting. Moreover, no appropriate theory of statistical inference

or analysis suggests whether to use the original or modified model to draw inferences

without empirical testing. Thus, we consider the decision about whether to estimate the

coefficient on the interaction as compared to fixing it to zero (or, equivalently, excluding

it) as an apparently minor specification decision and now show how remarkably sensitive

inferences are to this choice.

We now offer the left graph in Figure 4, which plots predicted values from both models

based on the actual values of UNOP4 and the other explanatory variables. This graph

shows that almost all the predicted values from the two models fall on the 45 degree line,

which marks identical predictions. Only six points fall markedly off the 45 degree line.

Of these points, we marked with a circle the five points for which the model with the
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interaction fits the in-sample data better than the original model, and with a square the

one point for which the original model fits better than the modified model. However one

looks at the results in this graph, we conclude that the two models give extremely similar

in-sample “factual” predictions. This means that, except for these six points, the models

are indistinguishable on the basis of the observed data.

[Figure 4 about here.]

We now turn to the counterfactuals of interest by setting UNOP4 to 1 − UNOP4,

leaving all other variables at their observed values, computing the same predicted values,

and redoing the same plot. Thus, this is the central question implied by Doyle and

Sambanis’s (2000) analysis: What happens if all the civil wars with multidimensional

UN intervention did not have such an UN intervention, and all the civil wars without

such UN interventions did have them. The logit model is effectively used in the article to

evaluate these counterfactual effects. The graph on the right in Figure 4 gives the results

by again plotting the predictions for the original vs. modified models. The result could

hardly be more dramatic, with very few of the points anywhere near the 45 degree line.

That is, for any value of the probability from the original model on the vertical axis (say

0.5 for example), the probabilities from the modified model are spread horizontally over

almost the entire range from 0 to 1. This dramatic result indicates that these two models

— that differ only very slightly in their fit to the in sample data — are giving wildly

different counterfactual predictions, with very little relationship between them. Of course,

these are precisely the results we would expect when counterfactual predictions are well

outside the convex hull and thus confirms the prediction suggested by the convex hull test:

Although the two models we chose fit the data almost identically, their counterfactual

predictions are completely different because the counterfactuals are far from the data.

23



The counterfactual questions asked in this analysis are undoubtedly very important, but

this analysis demonstrates that they cannot be reliably addressed by the data used.

We return to the analysis of these data, as well as the massively different substantive

implications of these results, in Section 3.7.

3 Causal Inference

We now turn to causal inference and the counterfactual evaluation necessary as part of

causal inference. We start with a definition of causal effects and then our decomposition of

the bias in estimation, and finally a discussion of the components of bias. We devote the

most space to discussing the components of bias due to interpolation and extrapolation,

during which we show how the techniques introduced in Section 2 can also help solve an

existing problem in causal inference. We illustrate with analyses in the same data used in

Section 2.4 on UN peacekeeping.

3.1 Causal Effects Definition

To fix ideas, we use a version of the democratic peace hypothesis as a running example,

which holds that democratic dyads are less conflictual than other dyads. Let D denote

the “treatment” (or “key causal”) variable where D = 1 denotes a democratic dyad and

D = 0 denotes a nondemocratic dyad. The dependent variable is Y , the degree of conflict

(but our discussion generalizes to all other dependent variables too).

To define the causal effect of democracy on conflict, denote Y1 as the degree of conflict

that would be observed if the dyad contained two democracies and Y0 as the degree of

conflict if this dyad were not both democracies. Obviously, only either Y0 or Y1 are

observed for any one dyad at any given time, but not both, since (in our present simplified

formulation) a dyad either is or is not democratic. This is known as the fundamental

problem of causal inference (King, Keohane and Verba, 1994).
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In principle, the democracy variable can have a different causal effect for every dyad

in the sample. We can then define the causal effect of democracy by averaging over all

dyads, or for the democratic and nondemocratic dyads separately (or for any other subset

of dyads). For democratic dyads, this is known as the “average causal effect among the

treated,” which we define as follows:

θ = E(Y1|D = 1)− E(Y0|D = 1) (2)

= “Factual”− “Counterfactual”

We call the first term — the average level of conflict among democratic dyads —

factual since Y1 is observable when D = 1. We refer to the second as counterfactual

because Y0 — the degree of conflict that would exist in a dyad if it were not democratic

— is not observed and indeed is unobservable in democratic dyads (D = 1). (The causal

effect for nondemocratic dyads (D = 0) is directly analogous and also involves factual and

counterfactual terms.)

Although medical researchers are almost always interested in the average causal effect

among the treated θ, political scientists are also interested in the average causal effect for

the entire set of observations,

γ = E(Y1)− E(Y0), (3)

where both terms have a counterfactual element, since each expectation is taken over all

dyads, but Y1 is only observed for democratic dyads and Y0 only for nondemocratic dyads.

These definitions of causal effects are used in a wide variety of literatures (Rubin, 1974;

Holland, 1986; Robins, 1999, 1999b; King, Keohane, and Verba, 1994; Pearl, 2000).

A counterfactual x in this context therefore takes the form of some observed data with

only one element changed — for example, the Mexico-Spain dyad with all its attributes

fixed but with the regime type in both changed to autocracy. Of course, we can easily

evaluate how reasonable it is to ask about this counterfactual in one’s data with the
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methods already introduced in Section 2: By checking whether x falls in the convex hull

of the observed X and computing the distance from x to X. In addition, since x has only

one counterfactual element we show that we can easily consult another criterion, whether

x falls on the support of X, although we discuss some problems with this alternative in

Section 3.6. The support of X is the range of values of X that are possible (i.e., have

positive density) whether or not they occur in our data.

In real applications, the true causal effect, θ or γ, is unknown and needs be estimated.

In Section 3.2, we discuss the sources of potential problems in using observational data to

estimate these causal effects. We focus on θ there for expository purposes as is usual in

the statistical and econometric literature. However, unlike prior literature, our companion

paper includes proofs that are generalized to accommodate these quantities of interest to

political science to show that our results also hold for the effect on nondemocracies and

for the overall average treatment effect, γ, as well.

3.2 Bias Decomposition

We begin with the simplest estimator of θ using observational data, the difference in means

(or, equivalently, the coefficient on D from a regression of Y on a constant and D):

d = mean(Y |D = 1)−mean(Y |D = 0) (4)

which is the average level of conflict in democratic dyads minus the average level of conflict

in nondemocratic dyads. To identify the sources of potential problems using observational

data in causal inference, we now present a new decomposition of the bias involved in

using the simple difference in means estimator d as an estimator of the causal effect θ.

This decomposition generalizes Heckman et al.’s (1998b) three-part decomposition. Their

decomposition was applied to a simpler problem that does not adequately represent the

full range of issues in causal inference in political science. Our new version helps to identify

and clarify the threats to causal inference in our discipline, as well as to focus in on where
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counterfactual inference is most at issue. In addition to identifying another key component

of bias, we also present the decomposition for both quantities of interest, γ and θ, whereas

Heckman et al. (1998b) only derived the result for the latter. Both results appear in our

technical companion paper and require a fair amount of mathematical derivation (they are

not merely analogies). Yet the results are simple. For θ, we show that,

bias ≡ E(d)− θ = ∆o + ∆p + ∆e + ∆i (5)

We derive the equality and give the precise mathematical definition of the terms ∆o, ∆p,

∆e, and ∆i our technical companion paper. These four terms denote exactly the four

sources of bias in using observational data, with the subscripts being mnemonics for the

components. The bias components are due to, respectively, omitted variable bias (∆o),

post-treatment bias (∆p), interpolation bias (∆i), and extrapolation bias (∆e). Briefly, ∆o

is bias due to omitting relevant variables such as common causes of both the treatment and

the outcome variables; ∆p is bias due to controlling for the consequences of the treatment;

∆i is bias that can result if not properly adjusting for included controls within the region of

the data; ∆e is bias from extrapolating beyond the range of data in adjusting for included

controls. We now explain and interpret each of these components in more detail with

particular focus on extrapolation bias, including a discussion of how to use the methods

we developed in Section 2 to help identify extreme counterfactuals in causal inference.

3.3 Omitted Variable Bias

The absence of all bias in estimating θ with d would be assured if we knew that it was

safe to use the observed control group outcome (Y0|D = 0, the level of conflict initiated

by nondemocracies) in place of the unobserved counterfactual (Y0|D = 1, the level of

conflict initiated by democracies, if they were actually nondemocracies). Since this is

rarely the case, we introduce control variables: Let Z denote a vector of control variables
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(explanatory variables aside from D), such that X = {D,Z}. If, after controlling for Z,

treatment assignment is effectively random — that is, if we measure and control for the

right set of control variables (those that are causally prior to and correlated with D and

affect Y after controlling for D), then the first component of bias vanishes: ∆o = 0. Thus,

this first component of bias, ∆o, is due to pertinent control variables being omitted from

X. This is the familiar omitted variable bias, which can plague any model.

Figure 5 illustrates omitted variable bias by plotting hypothetical data on a dependent

variable vertically and a control variable horizontally. The treatment variable values are

labeled in the graph. If we ignore the control variable, and thus project all the points to

the left axis, we are left with two histograms. The histograms mostly overlap, but the

control group (indicated by the dashed line) has a higher mean than the treated group

(the solid line). However, if we adjust for the control variable Z, and thus look at the

spread of the points in the body fo the graph, the causal effect estimate is revealed by

the vertical distance between points for given values of Z. Where data are available, we

see that the treated group data points are clearly above that for the control group data

points, thus reversing the original conclusion of no effect or a negative treatment effect.

(Ranges of Z where points do not exist for either the treatment or control group require

extrpolation, about which more in Section 3.6.)

[Figure 5 about here.]

Since endogeneity bias and selection bias can be written as omitted variable bias,

∆o encompasses these problems as well. In regression-type models, endogeneity bias,

selection bias, and omitted variable bias each cause inferential problems by inducing a

correlation between the explanatory variables and the error term. If we control for the

correct variables, then it is sometimes possible to eliminate these problems. In the omitted
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variable case, we can avoid the bias by including relevant variables such as common causes

of D and Y . Similarly, we can avoid the biases due to nonrandom selection if we control for

the probability that each unit is selected into the sample, and we can eliminate endogeneity

bias by including in the controls covariates that eliminate the conditional relationship

between X and the error term.

3.4 Post-Treatment Bias

Post-treatment bias is the second component of bias in our decomposition, ∆p, and it

deviates from zero when some of the control variables Z are at least in part consequences

of the key causal variable D. If Z includes these post-treatment variables, then when the

key causal variable D changes, the post-treatment variables may change too and the plan

to interpret the model as revealing the effect of the treatment “holding other variables

constant” becomes impossible.

As a simple example that illustrates the bias of controlling for post-treatment variables,

suppose we are predicting the duration of a African dictatorship using the unemployment

rate as the key explanatory variable. If we control for the existence of a well armed cabal

inside the palace gates five minutes before a coup attempt is launched, our estimate of the

effect of unemployment would be nearly zero. The reason is that we are inappropriately

controlling for the consequences of our key causal variable, and for most of the effects of it,

thus biasing the overall effect. Yet, we certainly should control for a pre-treatment variable

like the presence of natural resources in the country, since it cannot be a consequence

of unemployment but may be a common cause of both the explanatory and dependent

variables. Thus, causal models require separating out the pre- and post-treatment variables

and controlling only for the pre-treatment, background characteristics.

Post-treatment variable bias may well be the largest overlooked component of bias
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in estimating causal effects in political science (see King, Keohane, and Verba, 1994:

173ff; King, 1991). It is well known in the statistical literature, but is assumed away

in most models and decompositions. This decision may be reasonable in other fields,

where the distinction between pre- and post-treatment variables is easier to recognize and

avoid but, in political science and especially in comparative politics and international

relations, the problem is often severe. For example, is GDP a consequence or cause of

democracy? How about education levels? Fertility rates? Infant mortality? Trade levels?

Are international institutions causes or consequences of international cooperation? Many

or possibly even most variables in these literatures are both causes and consequences of

whatever is regarded as the treatment (or key causal) variable. As Lebow (2000: 575)

explains “Scholars not infrequently assume that one aspect of the past can be changed

and everything else kept constant,. . . [but these] ‘Surgical’ counterfactuals are no more

realistic than surgical air strikes.” This is especially easy to see in quantitative research

when each of the variables in an estimation takes its turn in different paragraphs of an

article playing the role of the “treatment.” However, only in rare statistical models, and

only under stringent assumptions, is it possible to estimate more than one causal effect

from a single model.

To avoid this component of bias, ∆p, we need to ensure that we control for no post-

treatment variables, or that the distribution of our post-treatment variables do not vary

with D. If this assumption holds, then ∆p = 0 and so this component of bias in (5)

vanishes.

In our field, unfortunately, we almost always need to consider both ∆o and ∆p together,

and in many situations we cannot fix one without making the other worse. The same is

not true in some other fields (which is perhaps the reason the ∆p component was ignored

by Heckman et al., 1998), but it is rampant in ours. Unfortunately, the news gets worse,
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since even the methodologist’s last resort — try it both ways and, if it doesn’t make

a difference, ignore the problem — does not work here. Rosenbaum (1984) studies the

situation where we run two analyses, one including and one excluding the variables that

are partly consequences and partly causes of X. He shows that the true effect could be

greater than these two or less than both. It is hard to emphasize sufficiently the seriousness

of this problem and how prevalent it is in comparative politics and international relations.

Although we have no general solution to this problem, we can offer one useful way to

avoid both ∆p and ∆o in many practical applications. Aside from choosing better research

designs in the first place, of course, our suggestion is to study what we call multiple-variable

causal effects. If we cannot study the effects of democracy controlling for GDP because

higher GDP is in part a consequence of democracy, we may be able to study the joint causal

effect of a change from nondemocracy to democracy and a simultaneous increase in GDP.

This counterfactual is more realistic, i.e., closer to the data, because it reflects changes that

actually occur in the world and does not require us to imagine holding variables constant

that do not stay constant in nature. If we have specified a parametric model with both

variables, we can study this question by simultaneously moving both GDP and democracy

while holding constant other variables at (say) their means. An alternative would be to

recode the two variables into one on, as much as possible, a single dimension.

If this alternative formulation provides an interesting research question, then it can be

studied without bias due to ∆p since the joint causal effect will not be affected by post-

treatment bias. Moreover, the multiple-variable causal effect might also have no omitted

variable bias ∆o, since both variables would be part of the treatment and could not be

potential confounder’s. Of course, if this question is not of interest, and we need to stick

with the original question, then no easy solution exists at present. At that point, we

should recognize that the counterfactual question being posed is too unrealistic and too
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strained to provide a reasonable answer using the given data with any statistical model.

Either way, this is a serious problem that needs to move higher on the agenda of political

methodology.

3.5 Interpolation Bias

Even if we can be sure that no omitted variable or post-treatment biases exist, we still

have to control for the observed pre-treatment variables properly. The two remaining

components of bias — interpolation bias and extrapolation bias — both have to do with

correctly identifying the necessary control variables but failing to adjust for them properly.

Interpolation bias or ∆i results from adjusting incorrectly for the correct control variables

in regions of interpolation, and extrapolation bias results from adjusting for the correct

controls where data are needed but do not exist. Interpolation bias is normally the less

serious of the two since it is more amenable to empirical testing.

Interpolation bias may exist in the simple difference in means estimator if the measured

control variables Z are related in any way to the treatment variable, that is if the multi-

variate density of Z for the treatment group differs from that for the control group (within

the region of interpolation). If in addition to these density differences Z also affects the

outcome variable, then interpolation bias will exist if the density differences in Z are not

properly adjusted.

When using a parametric model to adjust for control variables, this component of bias

arises from controlling for Z with the wrong functional form. For example, in an applica-

tion without post-treatment bias, with all control variables that could cause bias identified,

and where extrapolation is unnecessary, our estimator could still generate bias by choos-

ing a linear model to adjust for controls if the data were generated from a quadratic.

Fortunately, standard regression diagnostics are quite useful for checking model fit within
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the range of the data. Ultimately, whatever method of adjustment is used, the two mul-

tivariate histograms of Z for the control and treatment groups need to be the same for

interpolation bias to be eliminated. We provide further insight into interpolation bias

during our discussion of extrapolation bias, to which we now turn.

3.6 Extrapolation Bias

The last component of bias, and the one most related to the central theme of the paper, is

extrapolation bias. This component is the second of the two that arise from not adjusting

or improperly adjusting for identified control variables.

Extrapolation bias may arise when the support (or possible values) of the distribution

of Z for the treatment group differs from that of the control group. That is, there may

be certain values of Z that some members of one group take on but no members of the

other group possess. For example, we might observe no full democracies with GDP as

low as in some of the autocracies, but still somehow need to control for GDP. Intuitively,

these autocracies have no comparables in the data, and so are not immediately useful

for estimating causal effects. To make causal inferences in situations with nonoverlapping

support, we must therefore either eliminate the region outside of common support — as is a

standard practice in statistics and medicine — or attempt to extrapolate to the needed data

(e.g., autocracies with high GDP), such as by using a parametric model — as is standard

practice in political science and most of the other social sciences. As we demonstrate in

Section 2, extrapolation in forecasting involves considerable model dependence. The same

issue applies in causal inference, as we discuss here. Thus, unless we happen to be in

the extraordinary situation where a known theory or prior evidence makes it possible to

narrow down the possible models to one, or where we happen to guess the right model,

we will be left with extrapolation bias, ∆e 6= 0.
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3.6.1 Illustration with a Single Control Variable

Figure 6 illustrates some key issues involved in data that generate the need to extrapolation

in causal inference. The figure also illustrates the connection between the problems of

extrapolation in causal inference and extrapolation in forecasting and what if questions

discussed earlier. Figure 6 plots hypothetical data on the dependent variable vertically

and a single control variable Z horizontally. The treatment and control groups are labeled

and the points are clearly separated in the figure. To estimate the causal effect in these

data, we make comparisons between the treatment and control groups on the vertical

axis (which corresponds to the outcome variable). The key extrapolation problem is that

there exist no treated units for values of Z > 2 where some control data do exist, and so

any comparison between the treated and control groups in this region would be based on

extrapolating the treatment group data from where it is observed to where it is needed. In

other words, a study seeking to estimate a causal inference from data where extrapolation

is necessary is the same problem in that region as not having data for one of the two

groups at all.

[Figure 6 about here.]

As the figure shows, the two models fit to the treated data, one linear and one quadratic,

fit the treated data almost identically, but in the region to which the counterfactual extrap-

olations are needed (i.e., where control units exist but treated units do not), the difference

between the models is vast. This illustrates model dependence of course, but it also il-

lustrates extrapolation bias, since at least one of the models shown must be false in the

extrapolation region, so if used would generate bias and make ∆e 6= 0. Since we have no

data to test which model is appropriate, or whether both are wrong in the extrapolation

region, we have no means to rule out extrapolation bias based on empirical evidence.
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Interpolation bias could be seen in the figure if the different functional forms fit to the

treated data differed in sample. If that were the case (and it is not as drawn), then bias

would result if the estimation model were not close to the model that represented the data.

In practice, because model dependence is much less of an issue in areas of interpolation (or

on the common support) than in extrapolating, interpolation bias can often be detected

and corrected in ways that extrapolation bias cannot.

Extrapolation bias is far more difficult than interpolation bias. If we use the data

outside the region common support, we must extrapolate and will therefore have some

degree of model dependence and risk some bias for almost any model one would choose.

Alternatively, we can delete nonoverlap data, which eliminates the need to extrapolate.

Of course, this procedure would fail to produce any estimates at all in applications where

no data lie on the common support, a problem with some prevalence in our field. If some

data do lie within the common support region, and the quantity of interest is the average

treatment effect (γ in Equation 3), dropping observations outside of common support will

produce bias by definition, as it changes the population of inference and the quantity of

interest. Similarly, in the situation where we convince ourselves that we are interested

only in the average treatment effect on the treated (θ in Equation 2), dropping treatment

units not on common support will result in bias by changing the population of inference.

Although extrapolation bias is hard to correct without access to better data or willing-

ness to change the population of inference (and thus the research questions), identifying

the regions of extrapolation is important in all applications. It may be disappointing of

course to know that the desired questions have no good answers in available data, but it

is better to know this than to ignore it.
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3.6.2 Identifying Multivariate Extrapolation Regions with the Convex Hull

In the simple case when a model contains just one pretreatment variable Z, we can simply

plot a histogram of this variable for the treated (Di = 1) units on the same scale as

a histogram of this variable for the control (Di = 0) units, and compare them. Areas

requiring extrapolation can easily be identified as the areas of the histograms that do not

overlap. (Interpolation bias can arise where the histograms overlap but differ.)

In most real applications, of course, Z contains many control variables, and so identify-

ing the extrapolation region requires comparing multidimensional histograms (as estimates

of multivariate densities) for the treatment and control groups. For more than a few ex-

planatory variables, this is a difficult or impossible task. In practice, scholars have checked

common support by first collapsing their data to one variable via what is known as the

“propensity score,” but we show in our companion paper that this widespread use of the

propensity score is invalid. Fortunately, as we now show, a simpler procedure is available

based on the same convex hull concept and algorithm already introduced.

If we are interested in estimating the average treatment effect on the treated (θ in

Equation 2), then we simply discard any control units for which Z is not within the

convex hull of the treated units Z. (Even if some of the treated units are outside the

convex hull of the control units and thus would require extrapolation, they would not be

omitted so that the quantity of interest remains the same, although it would be worth

identifying them so that the source of the remaining model dependence is identified.)

If instead we are willing to change the quantity being estimated to something different,

but is reliably estimated without high levels of model dependence, then we would also

want to drop treated units that fall outside the convex hull of the control units. If this

alternative is desired, we can consolidate the two steps and estimate the common support

by the convex hull of the subset of observed Z within which the counterfactual points
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{1−D,Z} fall. In other words, begin with all the counterfactuals (which are {1−D,Z}).

Then, select only those that fall within the convex hull of the observed data. Our estimate

of the common support is then the convex hull of Z of this subset of the counterfactuals.

Thus, the same procedures for identifying whether points fall within the convex hull (as

described in Section 2.1) can be used to identify the region of common support. To avoid

the risk of voids within the region of common support, we can use the Gower distance to

assess whether any of the counterfactual points within the hull are far from any observed

data.

This strategy has not been used in the literature before, mostly because ascertaining

whether counterfactual points fall in the convex hull have not previously been viewed as

feasible. Given our new algorithm for finding whether points fall within the hull, this

strategy is now feasible, and easy to apply. Indeed, a key advantage of the strategy

suggested here is that at least a good first cut at finding the region of common support

can now be automated and easily included in standard statistical software. It is already

included in the software that accompanies this paper, (Stoll, King and Zeng, 2005), and

has also been implemented as part of a general purpose matching software package called

MatchIt (Ho et al., 2005).

Discussion of extrapolation bias in the quantitative empirical literature in most of the

social sciences focusing on causal inference is rare and relatively few studies attempt to

diagnose this issue formally, much less to do anything about it. Yet, using data without

complete common support produces highly model-dependent extrapolations to areas where

no data exist, and thus inferences become based partly on theoretical modeling rather than

empirical data analyses.
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3.7 The Causal Effect of UN Peacekeeping

We now apply the ideas introduced in Section 3.2 to the Doyle and Sambanis (2000)

example we first studied in Section 2.4. We focus on extrapolation bias, the component

of causal effect estimation bias most relevant to the theme of this paper. In the earlier

section, we showed how all the counterfactuals in these data were extrapolations and

far from the convex hull and thus inferences about them were highly model-dependent.

We now demonstrate the same point by the common support criterion, and show the

consequence of this model dependence on the causal inferences of interest.

Identifying common support by using our convex hull check is easy. We merely observe

how many of the counterfactuals that result by switching all multinational UN interven-

tions to no intervention, and switching all noninterventions to interventions, are inside the

convex hull of the observed data. In Section 2.4, we found that none of these counter-

factuals are within the hull, and so the common support is empty — the data include no

information with which to reliably compare the two groups and estimate the causal effects

of interest. In other words, there exist no civil wars in the data without UN intervention

that are sufficiently like the civil wars with UN intervention to construct an adequately

comparable control group. Going forward in this situation will generally produce high

levels of model dependence. In fields where scholars have paid attention to these issues,

the data would be judged to contain no information about the quantity of interest and no

estimates would be attempted unless strict assumptions were warranted.

Although the convex hull check is easy and fast, and the resulting meaning is clear

(the absence of civil wars in the data set without UN intervention that are otherwise the

same as the civil wars where the UN did intervene), it is not always easy to understand

a high dimensional calculation like this. Thus, we also illustrate the problem with a

couple of univariate checks in Figure 7. For example, the left graph in this figure shows a
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simple histogram for whether the parties signed a treaty to end the civil war. The darker

histogram shows that all UN interventions in these data were in civil wars with signed

treaties, but the lighter histogram indicates that only about 20% of the other civil wars

had signed treaties. Thus, any civil war without a signed treaty (the left bar, at 0, in the

figure) is outside the common support and cannot be used as a control group to evaluate

the effect of UN intervention. This is quite intuitive: The goal of the causal inference is to

isolate the effect of UN intervention, and so we want a treatment group that differs from

the control group only by intervention status. The problem is that the only way to use

these data would be to take countries without a signed treaty and without UN intervention

and to somehow guess using some model what their peacebuilding success would be if they

had no UN intervention but had signed a treaty. Extrapolations like this are the source of

model dependence.

[Figure 7 about here.]

The right graph in Figure 7 illustrates the same point for a continuous variable, pre-war

per capita electricity consumption. The density of electricity consumption in civil wars

with UN intervention are all clustered near the low end of the continuum. Anything above

that is outside the area of common support.

A key point is that, in general, one-dimensional graphs like these can identify some

areas not on the multivariate common support (here for example any civil war where the

parties have not signed a peace treaty or where pre-war electricity consumption is high)

— since what is not on the common support for any single control variable is certainly not

on the multivariate common support — but is not sufficient to identify the multivariate

common support. To do that, we must consider all the explanatory variables together.

That is, it is not enough for some observations to meet the test in the left graph and a
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different set of observations meet the test in the right graph. Observations on common

support must meet the common support test (have overlapping multivariate histograms)

for all variables simultaneously. Fortunately the convex hull provides a simple way to do

this for as many dimensions as are needed.

Finally, we illustrate the model dependence that results from the fact that none of the

data are on the common support for both the intervention and nonintervention groups.

To do this, we now compare estimates of the causal effects in the two logit analyses

in Table 2, which we showed fit the data almost identically and which differ only by

one interaction term. From these logit models, we compute the marginal effects of UN

peacekeeping operations as a function of the duration of the civil war, holding constant

all other variables at their means. Figure 8 plots these results.

[Figure 8 about here.]

The vertical axis in Figure 8 is the marginal effect, which, conditional on the veracity of

the logit model, is a causal effect. The horizontal axis is the duration of the civil war. The

dotted line is the causal effect of UN peacekeeping estimated by the the model originally

presented in Doyle and Sambanis (2000). Without a formal interaction term, the modest

nonlinearities of the logit model allow the effect of UNOP4 to vary with civil war duration

almost linearly, and the consequence is clear: The effect of UN peacekeeping operations

is smaller for civil wars that have gone on for a longer time before the UN stepped in.

This is quite a plausible result, since we might expect that long conflicts would be more

difficult to resolve.

However, as it turns out, the empirical support for this result depends almost entirely

on what are treated in the article as minor modeling assumptions not worth discussion

much less detailed justification. This can be seen by examining the solid line in the
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figure, which portrays the causal effect for the modified model. As can be seen, the effects

for the two models are massively different. In the modified model, the probability of

success is hardly affected by UN operations for relatively short wars, it increases fast,

and then declines in parallel to the original model. The huge differences for shorter wars

and the opposite slopes of the two lines in that region suggest diametrically opposed

policy implications for UN missions: According to one model, wars with the shortest

duration should receive the most attention from the UN, since that is where the model

indicates that the UN can have its biggest effect; according to the other model, the same

civil wars should receive the least attention from the UN. (Confidence intervals confirm

that inferences from the two models using more than point estimates also differ with

dramatically different policy implications.) Although the two models gave nearly identical

fit to the factual data, the counterfactuals are far enough from the observed data to make

conclusions highly sensitive to modeling assumptions. To be clear, no theory offered in

Doyle and Sambanis (2000) or the literature would rule out one of the two models, and the

data do not enable us to choose one either. We also do not prefer the modified model over

the original and introduce the modification only as an illustration of the extreme model

dependence that can result from using data outside of common support that requires

extrapolation.

4 Concluding Remarks

Even far-out questions with answers that are highly model-dependent may still be im-

portant enough to warrant further study. For a few examples, What would the future of

military conflict if globalization led to a world without nation states? How bad would the

devastation be from a third world war? If a new virulent infectious disease that is ten

times as bad as AIDS strikes the developed world and lasts longer than the AIDS crisis,
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would current international institutions survive? Scholars can and certainly still should

ask questions like these, but we would be better served if we knew whether and to what

degree our answers to them are based on empirical evidence rather than model assump-

tions. Sometimes, with the data at hand, no statistical model can give valid answers, and

we must rely on theory or new data collection efforts. The techniques offered in this paper

may be useful in ascertaining the degree to which this is the case. In this regard, it may

be useful for empirical researchers to report these or other statistics or to at least address

the problem in some way when they evaluate their counterfactuals.

We have used the methods discussed here to evaluate counterfactuals in the large area

of research devoted to assessing the effects of democracy. We found that questions about

democracy with empirical answers that are not highly model-dependent are a subset, some-

times a small subset, of those that have been asked. Usually scholars combine data on

all available democracies and autocracies to make predictions, ask “what if” questions, or

estimate causal effects. Unfortunately, many of the explicit or implied questions have no

available control groups or otherwise cannot be estimated without making assumptions

that even the authors would probably be unwilling to defend. We might like to know what

would happen if Iraq became a full democracy, for example, but history cannot be our

guide since almost no evidence exists in our data with which to evaluate such a question.

Although having small numbers of cases will often make finding a proper control group

harder, in this example, having access to time series-cross-sectional data sets with thou-

sands of observations does not change this basic fact and will not make inferences like

these any more secure. In fact, these data sets must be analyzed with more care than has

been common since, as it turns out, they do not include much evidence on many otherwise

interesting counterfactuals. Asking questions about the effects of changes in democracy

averaged over all countries — the predominant approach taken in the literature — al-
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most always implies questions without adequate empirical evidence to answer. Statistical

analyses in data sets like these should change: scholars could seek different types of ev-

idence, develop better theory, or narrow their inferential target to a subset of countries

and counterfactuals that have empirical support in their data.

Suppose we read about a model that fits the data exceedingly well, has a big likelihood

ratio or F statistics, narrow confidence intervals, significance on all coefficients, large

causal effect estimates, predictions with path breaking policy implications, and fascinating

answers to a range of “what if” questions. With statistical reporting standards now

commonly used in political science, essentially all such models would be published and

taken seriously by readers. A subset of these, however, would involve inferences that are

so model-dependent as to be nearly unrelated to the data at hand, and so are based more

on the authors’ hypotheses and convenient model assumptions than their data. The main

message of this paper is that assessing model dependence of counterfactual questions needs

to be a routine and expected part of statistical reporting for anyone making predictions,

asking “what if” questions, and estimating causal effects — which together encompasses

the goals of a large fraction of empirical work in the discipline.
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Notes

1Following standard practice in data analyses, ordinal explanatory variables are typically assumed

interval or coded as a set of dichotomous variables. Nominal variables are usually coded as a set of

dichotomies. With these changes, Equation 1 applies directly.
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Figure 1: Linear and quadratic models with equal fit to simulated data but massively dif-
ferent out-of-sample implications.
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Figure 2: Each graph displays three members from one family of statistical models. The
families are, clockwise from the upper left, logit, linear, exponential, and quadratic. Typi-
cally one family of models is chosen by the investigator and the statistical analysis chooses
the member of the family that best fits the data. Whether a different family fits better
instead is not considered by the statistical analysis program.
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Figure 3: Interpolation vs. Extrapolation: The convex hull of X is the smallest convex set
that contains the data. Inference on points inside the convex hull requires interpolation,
outside it requires extrapolation. With one explanatory variable, the convex hull is the
interval between the minimum and the maximum values of the observed data (as portrayed
as the points farthest to left and right on the left graph). With two explanatory variables,
the convex hull is a polygon with vertices at the extreme points of the data (as in the right
graph). Neither graph portrays the dependent variable, since it is not needed to ascertain
whether the counterfactual is an interpolation or extrapolation.
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Figure 4: Sensitivity of Predictions to Small Changes in the Model. The vertical axes are
predicted probabilities from the model in (Doyle and Sambanis, 2000) and the horizontal
axes are from the same model with the addition of an interaction term (see Table 2). The
left graph shows how both models produce almost identical probabilities; dots in this graph
that are farther from the line are marked with a square if the original model fits better
and a circle if the modified model fits better. The right graph makes predictions for all
observations by switching the 0/1 value of the UN peacekeeping indicator variable while
holding others constant. Note how the in-sample predictions from both models in the left
graph are approximately as good, but the out-of-sample predictions differ wildly.
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Figure 5: An Illustration of Omitted Variable Bias. The vertical axis is Y , a dependent
variable. The histograms are projections of the points in the graph to the left by ignoring
the control variable Z on the horizontal axis. The dashed line histogram is for the control
group, and solid line is for the treatment group.

54



Figure 6: Illustrating Nonoverlap and Density Differences: Hypothetical Data
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Figure 8: Causal Effect of Multidimensional UN Peacekeeping Operations
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Table 1: How Factual Are Counterfactuals About Democracy?

Average % of Data “Nearby”
Counterfactuals N % in Hull All in Hull only

Entire World
—Full Dem. to Autoc. 1775 53.1% 5.5% 8.4%
—Autoc. to Full Dem. 4039 17.6 2.4 8.2
—Part. Dem. to Autoc. 1376 80.5 12.3 14.7
—Autoc. to Part. Dem. 4039 61.8 4.2 6.0

Europe and Former USSR
—Full Dem. to Autoc. 961 54.2% 4.0% 5.8%
—Autoc. to Full Dem. 863 23.3 3.8 10.7
—Part. Dem. to Autoc. 493 86.0 11.2 12.7
—Autoc. to Part. Dem. 863 76.6 5.3 6.5

Canada and Latin America
—Full Dem. to Autoc. 383 64.5 8.6 11.7
—Autoc. to Full Dem. 604 30.5 3.4 8.1
—Part. Dem. to Autoc. 328 81.7 11.9 13.9
—Autoc. to Part. Dem. 604 69.5 5.4 7.3

Other Regions:
—Full Dem. to Autoc. 431 40.4 5.9 11.6
—Autoc. to Full Dem. 2572 12.8 1.7 6.4
—Part. Dem. to Autoc. 555 74.6 13.6 17.3
—Autoc. to Part. Dem. 2572 55.0 3.5 5.4
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Original Model Modified Model
Variables Coefficient Robust S.E. P-value Coefficient Robust S.E. P-value
Wartype −1.742 .609 .004 −1.666 .606 .006
Logdead −.445 .126 .000 −.437 .125 .000
Wardur .006 .006 .258 .006 .006 .342
Factnum −1.259 .703 .073 −1.045 .899 .245
Factnum2 .062 .065 .346 .032 .104 .756
Trnsfcap .004 .002 .010 .004 .002 .017
Develop .001 .000 .065 .001 .000 .068
Exp −6.016 3.071 .050 −6.215 3.065 .043
Decade −.299 .169 .077 −0.284 .169 .093
Treaty 2.124 .821 .010 2.126 .802 .008
UNOP4 3.135 1.091 .004 .262 1.392 .851
Wardur×UNOP4 — — — .037 .011 .001
Constant 8.609 2.157 0.000 7.978 2.350 .000
N 122 122
Log-likelihood −45.649 −44.902
Pseudo R2 .423 .433

Table 2: Peacebuilding Models With and Without Interaction Terms. The logit model
on the left replicates (Doyle and Sambanis, 2000); the model on right is identical to the
original except for the addition of an interaction term.
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